Heuristic-free Optimization of Force-Controlled Robot Search Strategies in Stochastic Environments

07/15/2022
by   Benjamin Alt, et al.
0

In both industrial and service domains, a central benefit of the use of robots is their ability to quickly and reliably execute repetitive tasks. However, even relatively simple peg-in-hole tasks are typically subject to stochastic variations, requiring search motions to find relevant features such as holes. While search improves robustness, it comes at the cost of increased runtime: More exhaustive search will maximize the probability of successfully executing a given task, but will significantly delay any downstream tasks. This trade-off is typically resolved by human experts according to simple heuristics, which are rarely optimal. This paper introduces an automatic, data-driven and heuristic-free approach to optimize robot search strategies. By training a neural model of the search strategy on a large set of simulated stochastic environments, conditioning it on few real-world examples and inverting the model, we can infer search strategies which adapt to the time-variant characteristics of the underlying probability distributions, while requiring very few real-world measurements. We evaluate our approach on two different industrial robots in the context of spiral and probe search for THT electronics assembly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset