Higher-order Neural Additive Models: An Interpretable Machine Learning Model with Feature Interactions

09/30/2022
by   Minkyu Kim, et al.
0

Black-box models, such as deep neural networks, exhibit superior predictive performances, but understanding their behavior is notoriously difficult. Many explainable artificial intelligence methods have been proposed to reveal the decision-making processes of black box models. However, their applications in high-stakes domains remain limited. Recently proposed neural additive models (NAM) have achieved state-of-the-art interpretable machine learning. NAM can provide straightforward interpretations with slight performance sacrifices compared with multi-layer perceptron. However, NAM can only model 1^st-order feature interactions; thus, it cannot capture the co-relationships between input features. To overcome this problem, we propose a novel interpretable machine learning method called higher-order neural additive models (HONAM) and a feature interaction method for high interpretability. HONAM can model arbitrary orders of feature interactions. Therefore, it can provide the high predictive performance and interpretability that high-stakes domains need. In addition, we propose a novel hidden unit to effectively learn sharp-shape functions. We conducted experiments using various real-world datasets to examine the effectiveness of HONAM. Furthermore, we demonstrate that HONAM can achieve fair AI with a slight performance sacrifice. The source code for HONAM is publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro