Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Gaussian processes (GPs) provide a powerful framework for extrapolation, interpolation, and noise removal in regression and classification. This paper considers constraining GPs to arbitrarily-shaped domains with boundary conditions. We solve a Fourier-like generalised harmonic feature representation of the GP prior in the domain of interest, which both constrains the GP and attains a low-rank representation that is used for speeding up inference. The method scales as O(nm^2) in prediction and O(m^3) in hyperparameter learning for regression, where n is the number of data points and m the number of features. Furthermore, we make use of the variational approach to allow the method to deal with non-Gaussian likelihoods. The experiments cover both simulated and empirical data in which the boundary conditions allow for inclusion of additional physical information.
READ FULL TEXT